
1

Exploring Persistence in Computing Education: An Ordered Network Analysis of Student

Engagement and Persistence in a Minecraft Learning Environment

Authors: Bess Hagan

Abstract

This research investigates persistence in the development of computational thinking (CT) skills

within a virtual game-based learning environment. Data was collected from adult and student

participants engaged in an introductory computing course using the WHIMC BarrelBot learning

environment. Event log data was analyzed using Exploratory Data Analysis (EDA) and Ordered

Network Analysis (ONA) to identify markers of struggle and persistence as users engaged in

problem-solving tasks. Our findings offer valuable information for future studies on persistence

in computing education and may assist in developing persistence learner models that enhance

targeted interventions for struggling learners. This research contributes to a growing body of

work on persistence in education and ongoing efforts to create inclusive and effective

educational experiences tailored to the diverse needs of all students.

Keywords: Persistence, computational thinking (CT) skills, virtual game-based learning

environment, WHIMC BarrelBot, computing education, event log data, Exploratory Data

Analysis (EDA), Ordered Network Analysis (ONA), engagement, struggle, problem-solving

strategies, educational interventions, student behavior, targeted interventions, inclusive

educational experiences

Introduction

Persistence in education is critical to student success, particularly in challenging subjects like

computing, which requires computational thinking (CT) skills such as planning and problem-

solving. Teaching CT to young students not only prepares them for future academic and career

opportunities but also provides an opportunity to practice logical reasoning and creative

problem-solving. Fortunately, virtual learning environments can foster CT skill development

while simultaneously collecting information-dense data on how young learners approach

computational problem-solving. This data can provide vital information on how students engage,

struggle, and persist in learning, allowing for the development of more inclusive virtual learning

environments that can anticipate student needs and help them persist when they face

challenges.

Accordingly, we investigate how students persist while learning by utilizing a Minecraft-based

virtual learning environment built by WHIMC1 (What-If Hypothetical Implementations in

Minecraft) called BarrelBot. This innovative learning environment introduces computing

concepts such as loops and functions to students by engaging them with the virtual character

BarrelBot, a programmable entity they use to navigate obstacle courses of increasing

complexity in a setting that is fun, familiar, and interactive.

Our research focuses on the analysis of log data generated by junior high school-aged

participants as they attempt to solve puzzles in the BarrelBot learning environment. We seek to

identify markers of engagement, struggle, and persistence during these activities. However,

prior to our student data collection, adult-generated mock data was used in the development of

1 https://whimcproject.web.illinois.edu/

https://whimcproject.web.illinois.edu/

2

Python scripts to extract, process, and calculate key metrics, and this information was used to

create operational definitions for in-game events that could be mathematically visualized using

Ordered Epistemic Network Analysis (ONA). ONA is a powerful tool for understanding

sequential co-occurrences, and it provided valuable insights into student behavior as we

endeavored to identify markers of struggle, persistence, and disengagement.

Ultimately, the findings from this study have the potential to inform the design of learner models

and educational interventions that can help a diverse student population persist when they face

learning challenges, especially in computing education.

Related Works

Persistence is often described as the continued effort toward a goal despite obstacles and

setbacks (Israel-Fishelson, & Herskovitz, 2020; Owen et al., 2019). Research on persistence in

education highlights its importance in student success, particularly in challenging subjects like

computing, which require sustained effort and CT skills such as problem-solving and logical

reasoning. Over time, game-based learning environments have emerged as an effective

platform for teaching these skills because they offer hands-on learning experiences that engage

students. Moreover, log data generated on these platforms can be utilized to study persistence

and inform the development of interventions that support students in overcoming challenges to

improve learning outcomes.

Israel-Fishelson and Hershkovitz (2020) explored how CodeMonkey, a game-based learning

environment, fostered persistence and the acquisition of CT skills among elementary students.

They delved deeper into this subject by researching micro-persistence to examine how students

persist at the task level (Israel-Fishelson, & Herskovitz, 2021), and their works collectively

underscore the importance of tailoring educational interventions to support persistence at

different stages of learning.

Before this work, Owen et al. (2019) used log data to differentiate wheel-spinning (persistence

without meaningful progress) from productive persistence (where students make steady

progress toward their learning goals). Their findings also emphasized the need for more timely

and adaptive interventions to support students in ways that allow them to persist productively in

virtual learning environments.

Research conducted by Israel-Fishelson and Hershkovitz (2020, 2021) and Owen et al. (2019)

demonstrate how game-based learning environments are ideal platforms for studying

persistence in computer science education, and they provide a comprehensive view of why

further research in this area is needed. Our research builds on these works by applying ONA

(Tan et al., 2022) to data collected from the WHIMC BarrelBot learning environment. Using this

analysis tool, we can mathematically visualize in-game student behavior as networks of

sequential co-occurrences to gain insight into how students approach problem-solving activities.

Generalizations from this analysis to identify markers of struggle and persistence may help to

inform the design of educational models and interventions that better support students in

developing CT and computing skills that are tailored to the specific needs of a diverse student

population.

3

The Learning Environment: WHIMC BarrelBot

BarrelBot’s first obstacle course in the Puzzle 1 Loops (P1L) section

Introduced in 2023, WHIMC BarrelBot is an innovative system designed within a Minecraft

server to present an introductory computing course to primary school-aged students. This virtual

environment features BarrelBot, a crate-shaped character with an emotive face that adds an

element of engagement to this interactive learning experience. Using a block-based approach,

students program BarrelBot to navigate obstacle courses, learning fundamental programming

concepts such as loops, conditional logic, algorithmic sequencing, and functions.

Lane sections are divided into computing concepts. The creative areas between each section allow students to apply what they

have learned by creating puzzles of their own for the user in the next lane to solve.

During data collection, each student in this learning environment is assigned a lane. Each lane

is subdivided into sections of increasing difficulty, structured to introduce computing concepts

that progressively build throughout gameplay. Although there are creative areas between

sections where students pair up to build and solve puzzles for one another, our research omits

these due to their lack of fixed solutions. Instead, our focus is on the Puzzle 1 Loops (P1L)

section of each lane, which contains three puzzles. The first puzzle is straightforward, requiring

students to program BarrelBot to move forward four times, serving as an introduction to basic

programming mechanics. The second puzzle is more complex, with a serpentine obstacle

course. The third puzzle introduces loops, challenging students to use a loop to navigate a

course similar to the second puzzle.

When ready, students begin puzzles by obtaining code blocks from a yellow Minecraft Shulker

Box (a generic container) embedded in the ground. After placing these code blocks in their

inventory, they are free to program BarrelBot in that puzzle region. Any number of directions can

be added, removed, or rearranged inside the bot, with the only limitation being the number and

type of directions obtained from the Shulker Box for that puzzle. Students can test their

4

solutions by pressing a grey stone button near the Shulker

Box, and they can adjust, run, and reset their program as

many times as they like. Correct solutions allow BarrelBot

to navigate through the obstacle course successfully, while

incorrect solutions result in BarrelBot crashing off course,

displaying a dizzy expression on its face.

Students can explore their environment and solve puzzles

in any order, or they may choose not to engage with

BarrelBot at all. However, access to the creative area

beyond P1L, where students build their own puzzles and

interact with their lane partners, requires the completion of

the third puzzle. Knowledge of this may provide the

necessary motivation students require to work on puzzles

to completion in this section.

Methods

Our initial efforts focused on generating data from the virtual learning environment and

conducting exploratory data analysis (EDA) to understand the dataset. The data included

unique identifiers such as usernames and puzzle names, as well as the puzzle boundary

coordinates to identify puzzle regions across all user lanes. Data on button presses, code

blocks used, and successful outcomes were also used to analyze user behavior in the learning

environment. Amongst the log data, player movement was the most robust, logging the x, y, and

z coordinates of all logged-in users every two to three seconds. This data was necessary to

determine which puzzle regions users were in across multiple tables in the database. To simplify

data processing, rows from this table where players’ x, y, and z-coordinates remained stable

were removed from the analysis. Therefore, it is important to note that time within the event log

generated for ONA is ordered but relative to the activity of the learner.

Button presses that allow the user to run or reset each puzzle are grouped by usernames and

puzzle names, and a count was recorded for each grouping to determine whether the user is

running or resetting each puzzle. When the count is odd, the player is running the puzzle and

when it is even, the user is resetting the puzzle. Combining this knowledge with known solutions

to puzzles can establish whether the user ran the puzzle successfully or unsuccessfully.

However, successful outcomes in this analysis are taken directly from the database as they are

logged, regardless of the z-coordinate associated with that data.

Logged code block data from each BarrelBot interaction was converted into strings of text to

calculate the edit distance (using Levenshtein distance) between interactions with the bot and

between students’ proposed solution at each interaction with the puzzle’s solution. This method

allowed us to numerically calculate the amount of change occurring between attempts and to

see if the user was getting closer or farther from the solution. Thus, when the distance between

the user’s attempted solution string and the solution string for a puzzle reached zero, the user

successfully ran the puzzle. These calculations and comparisons between the lengths of user

solution strings were used to identify whether users were adding, removing, or rearranging

directions between BarrelBot interactions as they attempted to solve puzzles.

Data was collected from approximately 100 junior high-aged students over two days. On the first

day, these students were divided into five groups, and each group took turns playing the P1L

5

section of BarrelBot using the same eighteen user accounts; some students worked side-by-

side on the same computer while others worked alone. Data from two of the five groups was

excluded from this analysis due to data loss and other difficulties that occurred during on-site

data collection. With this in mind, our analysis of student behavior will treat each user account

as though it were an individual student participant, but we will refer to students as users to avoid

misrepresenting our results.

The following day, seventeen students from the initial five groups returned to play through the

entire virtual learning environment a second time, beginning with the first three puzzles. These

students worked in the same room on separate computers using the same user accounts as the

day before but may or may not have been assigned the same username. Students were paired

together by lane number so that creative areas beyond the third puzzle could be worked on

cooperatively. Some student pairs actively worked together while others did not, and students

were allowed to move around the room to assist one another regardless of whether they had

completed any puzzles themselves.

Methods Subsection 1 – Processing Data & Operational Definitions

 EDA was followed by developing various Python scripts to extract, process, and calculate key

metrics, which were then used to create operational definitions for in-game events. These

operational definitions were used to develop a Python script to calculate and format event log

data for mathematical visualization using ONA.

To accomplish this, we used timestamps, usernames, and puzzle names to group in-game

events into a binary event log. Events included entering and exiting puzzle regions, interactions

with BarrelBot, button presses for running or resetting the puzzle, and whether the student’s

solution ran the bot successfully or not. Calculations for some events are dependent on the

knowledge of other events. For example, a user cannot exit a puzzle region without first entering

that region. Other events, such as BarrelBot fails, require the conversion of student solutions to

strings and knowledge of static puzzle solutions for each puzzle.

Event Operational Definition

Enter the puzzle region The user's z-coordinates are within the minimum and maximum z-coordinate for a given

puzzle.

Exit the puzzle region The user entered the region of a puzzle, but their z-coordinates are now outside the

minimum and maximum z-coordinate for that puzzle.

Interact with BarrelBot The user approaches BarrelBot in its starting position and opens the menu where they

may choose to make changes to the program using code blocks from their inventory.

Press stone button The user presses the grey stone button for a given puzzle.

Run the program Beginning at 1, count the number of times the user has pressed the stone button on a

given puzzle. If the count is odd, the program stored in BarrelBot executes.

Reset the puzzle Beginning at 1, count the number of times the user has pressed the stone button for a

given puzzle. If the count is even, the user has run their program and BarrelBot has

either successfully navigated the obstacle course or crashed. Resetting the puzzle places

BarrelBot in the starting position but does not alter the existing program. Users must

reset the puzzle before they can interact with BarrelBot or run their program again.

BarrelBot succeeds The user has programmed BarrelBot to successfully navigate the obstacle course for a

given puzzle by running the correct solution in BarrelBot.

BarrelBot fails The user has pressed the run button, but they have not programmed BarrelBot to

successfully navigate the obstacle course for a given puzzle.

6

To gain further insight into the students' problem-solving processes, the ‘Interact with BarrelBot’

event was further divided into subcategories. Each event subcategory calculation required both

ONA event log data, student solution string lengths, and edit distance calculations comparing

the student solution strings between each interaction with BarrelBot for a given puzzle. Dividing

interaction events into these subcategories allowed us to capture whether the learner added or

removed code blocks, looked in the bot without making any changes, rearranged the same

number of code blocks previously stored in the bot, or decided to remove all code blocks from

the bot.

Information formatted for ONA was explored to categorize students by their problem-solving

approaches in the hope that doing so might alert us to specific differences in how students’

behavior reflects struggle or persistence. For instance, we hypothesized that removing all code

blocks might indicate that something significant is happening to the learner in the environment.

They may be frustrated and ready to give up on the puzzle or they may be deliberately resetting

the puzzle for themselves to apply what they have learned without being influenced by previous

failed attempts, which may signal persistence. Knowledge of how the student approached this

puzzle before deleting their program may help us confirm this hypothesis and distinguish

between the two outcomes to build better persistence learning models.

Preliminary ONA analysis on mock data highlighted the necessity of a status column as well, to

determine whether sequential co-occurrences were part of the problem-solving process. This

status column was first used in combination with usernames and puzzle names to conduct ONA

analysis on data collected from student participants and later used to simplify ONA input files for

analysis by removing behavior occurring before each student’s first interaction with BarrelBot

and after their first success for each puzzle.

Methods Subsection 2 – EDA and ONA

Epistemic Network Analysis (ENA) identifies and quantifies connections and represents these

connections as dynamic visualizations of networks that can be compared visually and

statistically2. ONA, a form of ENA, processes ordered coded data, such as an event log. Our

event log was formatted for ONA to create mathematical visualizations of networks representing

sequential co-occurrences of in-game user behavior. We used a stanza window of 3 and

increased edge weights as needed to improve the visibility of directed edges and nodes which

2 https://www.epistemicnetwork.org/

Subcategories for BarrelBot Interactions Operational Definition
Interact: Make no changes While interacting with BarrelBot, the user neither adds,

removes, nor rearranges any code blocks in their program.
Interact: Add code blocks While interacting with BarrelBot, the user increases the

number of code blocks in the bot.
Interact: Remove code blocks While interacting with BarrelBot, the user decreases the

number of code blocks but leaves at least one code block

in the bot.
Interact: Remove all code blocks While interacting with BarrelBot, the user removes all of the

code blocks from the bot.
Interact: Rearrange code blocks While interacting with BarrelBot, the user alters the

program in the bot, but the number of code blocks in the

bot does not change.

https://www.epistemicnetwork.org/

7

co-occurred with themselves. Finally, the placement of nodes about the mean, standard

deviation, and other nodes was taken into consideration during our visual analysis.

We began with a cyclical process of EDA and ONA on mock data generated by adults. EDA

findings on adult interactions informed the design of operational definitions of in-game events

where users actively engage in solving BarrelBot puzzles. These definitions were used to

process data into a binary event log for ONA, and ONA allowed us to further refine this event

log. For example, we lacked definitions for meaningful movement beyond entering and exiting

each puzzle region, so we excluded event rows where users were moving but not engaging in

other meaningfully defined actions.

Next, we collected student-generated data over a two-day period. This data was cleaned,

processed, and formatted into a binary event log, excluding behavior both before users began

each puzzle and after each puzzle’s completion. EDA provided context on user behavior from

junior high school-aged students, revealing that Puzzle 1 (P1) offered little insight into solution

building due to its simplicity. Consequently, we removed users from the data set who had not

made a significant attempt to solve Puzzle 2 (P2) or Puzzle 3 (P3) in the P1L section of the

learning environment.

The first round of ONA established a baseline for behavior across the remaining users. These

visualizations represented average user behavior for each puzzle, informing the next round of

EDA where we categorized students for a comparative analysis of problem-solving and solution-

building strategies on P2 and P3 based on grouped user data, resulting in the following seven

categories:

• Completed P1 and attempted P2

• Completed P1 and P2 without attempting P3

• Completed P2 without attempting P3

• Completed P2 and attempted P3

• Completed P3 and attempted P2

• Completed P3 without attempting P2

• Completed P1, P2, and P3

ONA was used again to compare grouped users by puzzle, forming generalizations about user

behavior. These insights informed the final round of EDA through each user's detailed event log,

which included intermediate calculations used to process and format the ONA event log, such

as student solutions and edit distance calculations.

Results

Data was collected, cleaned, and processed from 62 user accounts interacting in the platform

over two days. Completion rates for each puzzle were calculated by dividing the number of

users that completed the puzzle by the number that attempted it. Initial completion rates were

87.9% for P1, 69.6% for P2, and 55.3% for P3. After calculating these rates, 10 users were

excluded from further analysis. For the remaining 52 users, data related to activities before they

began each puzzle and after they successfully programmed and ran BarrelBot were also

excluded from the analysis. ONA was performed to compare the P1, P2, and P3 networks for all

users. Codes were created for entering puzzle regions, exiting puzzle regions, BarrelBot

interactions, running the program in BarrelBot, resetting the puzzle, failed attempts, and

8

successful completions. Statistical analysis of these networks showed a Pearson and Spearman

Goodness of Fit of 0.99 across the x-axis

with a variance of 0.41

and 0.92 across the y-axis

with a variance of 0.26.

When code for general

BarrelBot interactions was

replaced with codes for

the five interaction

subcategories (adding,

removing, removing all,

rearranging, and making

no change to code blocks)

variance was reduced to

0.36 on the x-axis and

0.14 on the y-axis.

Differences between the

sequential co-occurrences

between the networks of

P2 and P3 were minimal,

as can be seen in Figure

1, with blue edges

representing P2 and

purple edges representing

P3. Accordingly, we

grouped data from P2 and

P3 to form their average

network for comparison

with P1.

In Figure 2, the difference

between P2 and P3’s

average green network

and P1’s red network

revealed stronger co-

occurrences of running

BarrelBot successfully for

P1. Conversely, co-

occurrences related to bot

interactions, resetting the

puzzle, and running the

program unsuccessfully

were more heavily

weighted in the average

network of P2 and P3.

9

P1 was subsequently removed from further ONA and EDA analysis, and users were grouped by

the puzzles they attempted and completed. The distribution was as follows: 19 users completed

all puzzles (15 of whom were revisiting the P1L section), 5 users completed P2 but did not

attempt P3, 12 users completed P2 and attempted P3, 11 users completed P1 and attempted

P2, 2 users solved P3 but did not attempt P2, 2 users completed P2 but did not attempt P3, and

1 user completed P3 and attempted P2.

In a comparison of two user groups that both completed P2 (Figure 3), the network of users who

completed fewer puzzles (blue edges) had more events co-occurring with themselves,

represented by the larger nodes with bright blue circles. For these users, adding code blocks to

BarrelBot and running the program in BarrelBot often co-occurred with themselves. While the

group that completed all three puzzles (green edges) had more bidirectional co-occurrences

between interacting with BarrelBot without making changes and adding code blocks to

BarrelBot, with slightly more weight on the directed edge from interactions without making

changes occurring before adding new code blocks.

In Figure 4, the networks for users who completed all puzzles (blue edges) were compared to

those who completed P2 but attempted P3 unsuccessfully (orange edges) on P3. Similar to the

more successful group from P2 (Figure 3), unsuccessful users on P3 had more bidirectional co-

occurrences of interactions where they made no changes to their program by adding code

blocks to BarrelBot and adding code blocks to BarrelBot co-occurring with itself. Additionally,

they had more co-occurrences of running BarrelBot unsuccessfully leading to interactions

without making changes, and interactions without changes leading to itself. In contrast to this,

10

the group that completed P3 had more co-occurrences of running their program unsuccessfully

and rearranging code blocks before and after failed runs.

These results led to another round of EDA in each user’s detailed event log, focusing on (1)

BarrelBot interactions where no changes to code blocks had been made and (2) edit distance

calculations, with regard to whether the user successfully completed the puzzle or not. Edit

distances of zero between interactions with BarrelBot indicated no changes to the program,

which was common across users regardless of puzzle completion. It was also found that most

users ran their program between BarrelBot interactions, but the number of times users ran their

program between changes varied and multiple test runs were not an unusual co-occurrence.

Discussion

It is important to note that struggle, persistence, engagement, and disengagement exist on a

continuum and are related considerably. Users may disengage from an activity for several

reasons, but a user cannot persist if they are not first engaged in some form of challenge that

they must work through to overcome. Thus, a user must engage and struggle to persist.

Conversely, a user who does not persist must disengage after experiencing some form of

challenge. If a user disengages from a challenge after struggling to complete it, this may be a

signal that some form of intervention is needed to help the user persist. The form of intervention

needed for a user with lower detected levels of persistence may or may not resemble the

interventions needed for users who persist unproductively. For these reasons, our analysis of

log data often refers to markers of struggle with regard to its relation to persistence as we

11

attempt to better understand how young learners persist or fail to persist when facing

educational challenges.

Findings from EDA and ONA revealed distinct patterns of behavior among users as they

engaged with BarrelBot puzzles. These patterns provided valuable insights into how users

approached problem-solving tasks in a virtual learning environment, particularly when

considering the complexities introduced by different puzzles. For P1, users faced challenges

primarily related to understanding the mechanics of gameplay. This was evident in the event

logs, which showed instances of users running and resetting the bot repeatedly before placing

code blocks collected from the Shulker Box into BarrelBot. However, due to P1’s basic nature, it

offered limited insight into deeper problem-solving strategies. In contrast, P2 and P3 revealed

more about users’ problem-solving processes because they resembled one another as users

transitioned from learning to program sequentially to programming iteratively with a loop.

Notably, P3 appeared to be the most challenging puzzle in the P1L section, indicating that the

use of loops is not the most intuitive computing concept for users to grasp. Detailed log data

revealed several users who initially placed the loop code block at the end of their program the

first time they used it in BarrelBot, suggesting unfamiliarity with the syntactic organization of

code, where loops typically precede the instructions they repeat.

Two basic building strategies emerged from our data collection. Generally, users either built

solutions a few code blocks at a time, or they placed several code blocks into BarrelBot and

rearranged them as they built toward a solution. Combinations of these strategies were also

used, but the frequency of combining these techniques appeared to increase with puzzle

complexity. It was never determined if one building strategy was more advantageous than the

other, but we observed that several high-performing users, those who appeared to solve P2 and

P3 with ease, seemed to favor iteratively adding code blocks over rearranging them.

Most users interacted with BarrelBot without making changes to their program and ran their

program between the changes they made as part of their patterned building strategy. Running

the program may assist users in making programming choices because it allows users to watch

BarrelBot crash. For instance, if the puzzle requires BarrelBot to turn left and move forward but

the user programs BarrelBot to turn right before moving forward, the user can see BarrelBot turn

in the incorrect direction before crashing. This informs users about what changes to make to the

code blocks in BarrelBot. Equally informative, particularly to users who can visualize their

program in action without running BarrelBot, are interactions with BarrelBot where users make

no changes. Doing so may be an indication that users are peeking inside BarrelBot to look at

their existing script. Essentially, this action allows users to toggle back and forth between the

existing program in BarrelBot and the puzzle they are working on, which could inform their

solution-building choices.

As puzzle complexity increased, peeking inside BarrelBot and running BarrelBot tended to occur

more frequently across most users. However, we determined that the number of times a user

ran their program unsuccessfully did not clearly indicate struggle or persistence because users

who run their program often may be doing so as a part of their solution-building strategy to

methodically build and test their program piece by piece. With this strategy, it may take longer to

reach a solution, but this does not necessarily mean a user is experiencing struggle. In contrast

to this, users who may be struggling may avoid running BarrelBot for testing purposes, which

may hinder their progress. Nevertheless, frustration or disengagement may occur when users

who were once actively working on a puzzle begin to run BarrelBot excessively between

12

meaningful modifications to their program. Such a change to patterned user behavior in solution

building, particularly when a user’s progress toward a solution has stagnated, may signify that

the user has begun to experience struggle.

Breaks in patterned behavior may also include exiting the puzzle region, but changes in

behavior were most evident when users began to remove some or all code blocks from their

program, as these events were rare across all users. Code block removal sometimes preceded

significant amounts of change resulting in a successful BarrelBot run, but it also led to users

failing to complete the puzzles they were attempting. Similar to BarrelBot runs and changeless

interactions, instances of code block removal across all users appeared to increase with puzzle

complexity. Initial impressions from ONA analysis comparing the behavior of groups of users by

the puzzles they attempted or completed suggested that successful users exhibited less

variance in their behavior, while less successful users showed more signs of backtracking or

stalling co-occurring with unsuccessful runs. These behaviors may have implied that users

experiencing difficulty may have been struggling to identify effective problem-solving strategies

or were hesitant about making mistakes that might lead to a BarrelBot crash.

EDA following this analysis revealed that users who appeared to solve puzzles with ease

behaved differently than the average user in the amount of change they made to their program

each time they modified it. The amount of change between solution attempts was quantified

using edit distance calculations. Average users tended to make smaller changes between

BarrelBot interactions, usually less than four, while high-performing users made much larger

changes to their programs each time they interacted with BarrelBot, often much greater than

four. Moreover, with nearly every large change they made, the edit distance between their

current program and the puzzle’s solution decreased by roughly the same amount. Both high-

performers and average users were similar in the way they frequently interacted with the

BarrelBot without making changes to their script, but high-performing users generally tested

their code by running BarrelBot less frequently than the average user, with some only running

their program once or twice while building their solution and others running it after each program

modification they made.

Regardless of the ease or difficulty users appeared to experience, users across all grouped data

occasionally removed code blocks from their programs, particularly on P3. For high-performing

users, this behavior change was the most striking due to their highly patterned tendencies in

solution building, once again suggesting that changes in patterned problem-solving behavior

may be meaningful in the study of persistence. Accordingly, we hypothesize that as the

challenge increases for individual users (even high-performing users) established patterns of

solution-building may become more variable and less patterned, with the removal of all code

blocks, in particular, being a powerful marker of the beginnings of struggle, persistence, or

disengagement.

Limitations and Future Work

This analysis has several limitations. First, user data collected on day 1 included instances of

both individual and paired students working on the same computer. This could have potentially

influenced our results, as collaborative efforts might differ from individual problem-solving

approaches. Additionally, onsite interventions that occurred were not recorded in our data set

which may have affected our results or complicated the identification of struggle, persistence, or

disengagement.

13

Next, users from the first day of data collection appeared to have run out of time on later

puzzles, impacting the reliability of ONA made in our initial groupings. Some of these users

appeared to be nearing completion while others may have been exhibiting signs of struggle or

disengagement. On day 2, a subset of the first day's participants revisited the P1L section, and

they were given more time to successfully complete these puzzles. Consequently, this familiarity

may have improved overall user performance and skewed our impressions of solution-building

behavior.

In addition to this, time constraints after data collection hindered us from further development of

the analysis pipeline to include more puzzles and establish thresholds for significant or minor

changes to user solutions between BarrelBot interactions. This hindered our ability to categorize

users more appropriately for ONA to more closely examine behavioral nuances. Moreover, ONA

limited our ability to detect patterns in solution building. Process Mining might offer a more

robust alternative for future studies, as it can better capture the dynamic nature of user

engagement or struggle by analyzing patterns that change over time.

Future research should focus on gathering data from child participants to better understand how

users struggle and persist in the BarrelBot learning environment. There is also a need to

develop clear data collection protocols to prevent data loss and improve the validity of results.

Identifying whether students are working alone or receiving on-site assistance or instructions

and knowledge of whether student participants are completing puzzles for the first time may

also be informative about their behavior.

The analysis pipeline will require further refinement to include all puzzles with static solutions

beyond the P1L section and to establish thresholds for significant versus minor changes to

users’ programs as they build them to identify when users are making progress toward the

solution or not. Finally, the time between meaningful events should also be considered, as it

may be crucial in identifying patterns indicative of struggle, persistence, or disengagement.

Finally, Process Mining techniques may be better suited than ONA for understanding how

different types of students engage with the environment and develop their problem-solving

strategies. This approach could help identify patterns in solution building and markers of

struggle that occur over time, offering a more comprehensive understanding of student behavior

to inform the development of persistence learner models which could lead to the development of

support systems that help students stay engaged and persist through challenges in game-based

learning environments.

Conclusion

This study employed EDA and ONA to examine student behavior within the WHIMC BarrelBot

learning environment, focusing on identifying markers of struggle and persistence in an

introductory computing course. Our findings underscore the potential of game-based learning

environments to provide valuable insights into student behavior as they engage in problem-

solving activities specific to computing education and the development of CT skills.

The preliminary analysis of mock data generated by adult users aided in refining our approach

to defining and categorizing engagement in the WHIMC BarrelBot learning environment. This

enabled us to clean and process data generated by junior high-aged participants into detailed

user logs and binary event logs. Through a cycle of EDA and ONA on these logs, we gained a

deeper understanding of their problem-solving behavior and solution-building strategies while

14

attempting to identify general markers of struggle and persistence for young learners. Thus, our

analysis serves as an exploratory starting point for future research.

Future research should involve collecting data from a diverse and age-appropriate student

population to validate our findings and enhance the understanding of persistence in learning.

Additionally, future studies may benefit from employing analytical tools such as Process Mining

to gain further insights into the dynamic nature of how students engage, struggle, persist, and

disengage in complex problem-solving challenges over time.

Ultimately, this research contributes to a growing body of work on persistence in education

aimed to foster more inclusive and supportive learning environments. Research on persistence

will aid in the development of adaptive persistence learner models and effective educational

interventions that cater to the diverse needs of all students, allowing them to persist in their

educational goals and CT skill development.

15

Acknowledgments

Special thanks to Luc Paquette and Juan Pinto for their input and assistance.

This work was funded in part by the National Science Foundation (DRL-2229612). The opinions,

findings, and conclusions do not reflect the views of the funding agencies, cooperating

institutions, or other individuals. Any conclusions expressed in this material do not necessarily

reflect the views of the NSF.

The author acknowledges the assistance of ChatGPT, a large language model, in the editing

and proofreading process of this manuscript.

References

Israel-Fishelson, R., & Hershkovitz, A. (2020). Persistence in a Game-Based Learning

Environment: The Case of Elementary School Students Learning Computational Thinking.

Journal of Educational Computing Research, 58(5), 891-918.

https://doi.org/10.1177/0735633119887187

Israel-Fishelson R., & Hershkovitz A. (2021) Micro-persistence and difficulty in a game-based

learning environment for computational thinking acquisition. Journal of Computer Assisted

Learning, 37, 839–850. https://doi.org/10.1111/jcal.12527

Owen, V. & Roy, Marie-Helene & Thai, Kp & Burnett, Vesper & Jacobs, Daniel & Keylor, Eric &

Baker, Ryan. (2019). Detecting Wheel-spinning and Productive Persistence in Educational

Games.

Tan, Y., Ruis, A. R., Marquart, C., Cai, Z., Knowles, M. A., & Shaffer, D. W. (2022, October).

Ordered network analysis. In International Conference on Quantitative Ethnography (pp. 101-

116). Cham: Springer Nature Switzerland.

